7-11 October 2019
Facultad de Ciencias Físicas, Universidad Complutense de Madrid
Europe/Madrid timezone

Hadronization in Terms of First-Order Phase Transition

8 Oct 2019, 09:00
35m
Aula M2 (Facultad de Ciencias Físicas, Universidad Complutense de Madrid)

Aula M2

Facultad de Ciencias Físicas, Universidad Complutense de Madrid

Plaza de Ciencias, 1 Ciudad Universitaria 28040 Madrid, Spain

Speaker

Dr. Andrew Koshelkin

Description

The hadronization of the deconfined matter arising in high-energy particle collisions is considered in terms of the first-order phase transition in the multiple flux tube approach. Based on the compactification of the standard (3+1) chromodynamics into $ QCD_{xy} + QCD_{zt}$, the rate of hadron production in particle collisions with respect to both the rapidity and $p_T$ distributions is derived in the flux tube approach. The obtained rate strongly depends on the energy of the colliding particles, number of tubes, hadron mass as well as on the temperature of the confinement-deconfinement phase transition. Under the concept of the longitudinal dominance and the transverse confinement in a flux tube, and provided that the hadronization process is governed by the phase transition of the first kind, the hadron rate is obtained in the explicit form in the multiple tube approach. In the case of the pion production in $pp$ collisions we obtain a good agreement to the experimental results on the pion yield with respect to both the rapidity and $p_T$ distributions.

Primary author

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×